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ABSTRACT

This work provides analytical results on the canonical cor-

relation analysis (CCA) of data sets from two spatially sepa-

rated arrays of sensors. Our case studies cover both single

source and multiple source signals in either white or colored

noise fields for array signal processing. We derive analyti-

cal expressions of the canonical correlation for these exam-

ples and present a computer simulation analysis of empirical

canonical correlations as a function of nominal correlation,

signal-to-noise ratio (SNR), and sample support. Results ob-

tained reveal an interesting fact that the canonical coefficients

from CCA provide reliable information on the spatial corre-
lation existing among data sets from two arrays only when

the SNRs at both arrays are reasonably high. When sample

correlation matrices (SCM) are used in the empirical CCA, re-

liable correlation can be estimated from CCA asymptotically

(either at high SNRs from both arrays, or with a large number

of snapshots in comparison with array dimensionality).

Index Terms— canonical correlation analysis (CCA), ar-

ray signal processing,

1. INTRODUCTION

Canonical correlation analysis (CCA) [1, 2] is a standard

statistical tool for analyzing and exploring the correlations

among two multivariate data measurements. Our particular

interest in studying the CCA for array applications is driven

by the need to determine the signal spatial coherence across

two spatially separated arrays (with inherent non-stationarity)

and subsequent coherent signal processing for source local-

ization and beamforming. Therefore, we put special emphasis

on the impact of data quality, in terms of SNR, on the corre-

lation revealing nature of the CCA. The non-stationary nature

of our data motivates us to study the reliability aspect of the

empirical CCA in comparison with the true statistic-based

CCA when only a finite amount of data is available.

The CCA, which measures the cosines of principal angles

between two random vectors, has been successfully applied
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for analyzing second-order filtering and communication sys-

tems over the Gaussian channel [3, 4]. They multiplicatively

decompose concentration ellipses for second-order filtering

and additively decompose information rate for the Gaussian

channel. For array applications, the asymptotical property

of CCA has been exploited by [5, 6] to design effective so-

lutions to the estimation of sources’ directions of arrival, to

the determination of model order, and to the performance im-

provement of existing subspace DOA estimation methods. In

this work, we focus on the application of CCA in array signal

processing with emphasis on the impact of sources’ SNRs at

different receiving arrays. From several simplified but prop-

erly formulated nominal examples, we derive the analytical

expressions for the canonical coefficients of one and two sig-

nal sources embedded in white and colored noise, and analyze

the performance of empirical canonical correlations as a func-

tion of nominal correlation, SNR, and sample support.

2. SINGLE SOURCE TWO ARRAYS

Given two sets of data vectors in the forms of,

x(t) = sxαx(t) + nx(t)
y(t) = syαy(t) + ny(t)

, t = 1, 2, . . . , M. (1)

At a fixed time index, the data vectors x(t) and y(t), of di-

mensions Nx × 1 and Ny × 1 respectively, can be treated as

snapshots from two spatially separated arrays. We further as-

sume that they are zero-mean complex Gaussian distributed

with auto/cross-correlation matrices,

Rxx = E
{
x(t)xH(t)

}
= σ2

xsxsH
x + Rnxnx

Ryy = E
{
y(t)yH(t)

}
= σ2

ysysH
y + Rnyny

Rxy = E
{
x(t)yH(t)

}
= ρσxσysxsH

y + Rnxny
.

Here, parameter ρ = E{αx(t)α∗
y(t)}/σxσy denotes the spa-

tial correlation coefficient between two Gaussian processes

αx(t) and αy(t), with zero means and prescribed correla-

tion. When two arrays’ spatial separation distance is greater
than the spatial coherence length of the noise field, we can

safely assume Rnxny
= 0. The augmented Gaussian vector
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z(t) = [xT (t) yT (t)]T has a correlation matrix,

Rzz =
[

Rxx Rxy

Ryx Ryy

]
= Rss + Rnn,

with Rss =
[

sx 0
0 sy

]
·
[

σ2
x ρσxσy

ρ∗σxσy σ2
y

]
·
[

sx 0
0 sy

]H

,

and Rnn =
[

Rnxnx
0

0 Rnyny

]
.

Using a square-root decomposition of a Hermitian matrix,

Rxx = R1/2
xx RH/2

xx and R−1
xx = R−H/2

xx R−1/2
xx , we can find

the analytical expressions for the canonical correlation coeffi-

cients, given the data model in eq. (1). In principle, the CCA

involves two stages of data transformation. The first stage ac-

complishes a task of whitening each vector-component of the

augmented vector z(t). That is, the block-whitened data ζ(t)
defined by,

ζ(t) �
[

μ(t)
ν(t)

]
=

[
R−1/2

xx 0
0 R−1/2

yy

]
︸ ︷︷ ︸

a block-whitening operator

z(t),

has correlation matrix of the following form,

Rζζ = E
{
ζ(t)ζH(t)

}
=

[
I C

CH I

]
.

Here C = R−1/2
xx RxyR

−H/2
yy is the coherence matrix. The

second stage in the CCA diagonalizes the coherence matrix C
via orthogonal matrix transformation, or equivalently, using

a transformation to produce decoupled canonical coordinates.

When the background noise is white, we can derive the eigen-

structures for the matrices Rxx and Ryy . Specifically,

Rxx = σ2
xsxsH

x + σ2
nx

I =
Nx∑
i=1

λx,ivx,ivH
x,i,

with its eigen-values and eigen-vectors given by,

the principal pair: λx,max � max{λx,i} = σ2
x‖sx‖2 + σ2

nx

vx,max � vx,1 = sx

/‖sx‖,
the minor eigenpairs: λx,i = σ2

nx
(repeated eigenvalues)

vx,i ⊥ sx, i = 2, 3, . . . , Nx

Hence, the spectral decomposition of R−1/2
xx becomes,

R−1/2
xx =

1√
σ2

x‖sx‖2 + σ2
nx

Psx
+

1
σnx

P⊥
sx

. (2)

Here the matrices Psx
= sxsH

x

/‖sx‖2 and P⊥
sx

= I − Psx

are orthogonal projection operators onto the signal subspace

〈sx〉 and its orthogonal complement. Similarly, we have,

R−1/2
yy =

1√
σ2

y‖sy‖2 + σ2
ny

Psy
+

1
σny

P⊥
sy

. (3)

Consequently, the analytical expression for the canonical

coefficients can be derived from the singular value decompo-

sition (SVD) of the coherence matrix C, i.e.,

C = R−1/2
xx RxyR−H/2

yy

=
ρσxσy√

σ2
x‖sx‖2 + σ2

nx

√
σ2

y‖sy‖2 + σ2
ny

sxsH
y . (4)

This indicates that the only non-zero canonical correlation co-

efficient is given by the principal singular value of C,

k(1) = |ρ| σxσy‖sx‖ · ‖sy‖√
σ2

x‖sx‖2 + σ2
nx

√
σ2

y‖sy‖2 + σ2
ny

= |ρ| ·
√

ηx

1 + ηx
·
√

ηy

1 + ηy
, (5)

with ηx � σ2
x‖sx‖2

/
σ2

nx
and ηy � σ2

y‖sy‖2
/
σ2

ny
represent-

ing the output SNR of array-x and array-y, respectively. Be-

sides the known fact that the number of sources impinging on

the arrays is indicated by the number of non-zero canonical

correlation coefficients [2], our result in eq. (5) brings up the

important correlation revealing property of the CCA. That is,

only when reasonably high SNRs are observed in both data
sets, i.e. ηx, ηy � 1, hence k(1) → |ρ|, can the canonical

correlation coefficients truthfully reveal the spatial coherence

existing in data sets from two spatially separated arrays.

3. EXTENSION TO COLORED NOISE FIELDS

Quite often, colored noise fields are present at each array due

to the compact design of arrays. In such applications, the

noise correlation matrices Rnx
and Rny

are no longer diag-

onal. We first introduce a preliminary transformation matrix

on the augmented data vector z(t) as follows,

ζ(t) �
[

μ(t)
ν(t)

]
=

[
R−1/2

nx 0
0 R−1/2

ny

]
︸ ︷︷ ︸

a noise whitening operator

z(t),

so that the correlation matrix of data ζ(t) becomes,

Rζζ = E
{
ζ(t)ζH(t)

}
=

[
R11 R12

RH
12 R22

]
,

with, R11 = R−1/2
nx

· σ2
xsxsH

x · R−H/2
nx

+ I

R22 = R−1/2
ny

· σ2
ysysH

y · R−H/2
ny

+ I

R12 = R−1/2
nx

· ρσxσysxsH
y · R−H/2

nx
.

We then adopt the standard block-whitening procedure in the

CCA to the vector-components in data ζ(t), resulting in the

block-whitened data vector

ξ(t) �
[

R−1/2
11 0
0 R−1/2

22

]
︸ ︷︷ ︸

a block-whitening operator

ζ(t),
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with R−1/2
11 and R−1/2

22 given as,

R−1/2
11 =

1√
σ2

x‖R−1/2
nx sx‖2 + 1

P
R

−1/2
nx sx

+ P⊥
R

−1/2
nx sx

R−1/2
22 =

1√
σ2

y‖R−1/2
yny sy‖2 + 1

P
R

−1/2
ny sy

+ P⊥
R

−1/2
ny sy

(6)

This results in a correlation matrix

Rξξ = E
{
ξ(t)ξH(t)

}
=

[
I C

CH I

]
, (7)

with coherence matrix

C = R−1/2
11 R12R

−H/2
22

= ρ
σxR

−1/2
nx sx · σy

(
R−1/2

ny sy

)H√
σ2

x‖R−1/2
nx sx‖2 + 1

√
σ2

y‖R−1/2
ny sy‖2 + 1

. (8)

The above rank-1 coherence matrix again leads to a single

non-zero canonical correlation coefficient,

k(1) = |ρ|
√

ηx

1 + ηx
·
√

ηy

1 + ηy
, (9)

with ηx � σ2
x‖R−1/2

nx sx‖2 = σ2
xs

H
x R−1

nx
sx and ηy �

σ2
y‖R−1/2

ny sy‖2 = σ2
ys

H
y R−1

ny
sy being the output SNRs at

array-x and array-y in colored noise fields, respectively.

Again, at high SNRs, ηx, ηy � 1, we have k(1) → |ρ|,
meaning that the canonical correlation coefficient reveals

the spatial coherence (normalized) among two sets of data

vectors from two spatially separated arrays.

4. EXTENSION TO TWO SOURCES TWO ARRAYS
When two signal sources are present in the data sets from two

arrays, the correlation matrices take the following forms,

Rxx = σ2
x,1sx,1sH

x,1 + σ2
x,2sx,2sH

x,2 + σ2
nx

I

Ryy = σ2
y,1sy,1sH

y,1 + σ2
y,2sy,2sH

y,2 + σ2
ny

I

Rxy = ρ1σx,1σy,1sx,1sH
y,1 + ρ2σx,2σy,2sx,2sH

y,2

Matrix Rxx can be represented in its orthogonal eigen-modes

in descending order, i.e.,

Rxx =
Nx∑
i=1

λx,ivx,ivH
x,i,

where the first two principal eigen modes span the signal sub-

space, span(vx,1,vx,2) = span(sx,1, sx,2). Under the com-

monly held condition: ‖sx,1‖ = ‖sx,2‖ = ‖sx‖, two orthog-

onal vectors, sx,Σ � sx,1 + sx,2 and sx,Δ � sx,1 − sx,2, can

be constructed from the two signal modes. Therefore, the two

principal eigen-vectors can be formed as,

vx,1 =
sx,Σ

‖sx,Σ‖ , vx,2 =
sx,Δ

‖sx,Δ‖ . (10)

This leads to the detailed spectral decomposition,

Rxx
∗=

σ2
x

2
sx,ΣsH

x,Σ +
σ2

x

2
sx,ΔsH

x,Δ + σ2
nx

I

=
σ2

x‖sx,Σ‖2

2
vx,1vH

x,1+
σ2

x‖sx,Δ‖2

2
vx,2vH

x,2 + σ2
nx

I, (11)

where equality
∗= holds when σ2

x,1 = σ2
x,2 = σ2

x. Accordingly

the eigenvalues of Rxx can be found as,

λx,1 =
σ2

x‖sx,Σ‖2

2
+ σ2

nx
; λx,2 =

σ2
x‖sx,Δ‖2

2
+ σ2

nx
;

λx,i = σ2
nx

(i = 3, 4, . . . , Nx).

Hence the spectral decomposition of R−1/2
xx and R−1/2

yy

has the following forms,

R−1/2
xx =

[
vx,1 vx,2

]·
⎡
⎣ 1√

λx,1
− 1

σnx
0

0 1√
λx,2

− 1
σnx

⎤
⎦·[ vH

x,1

vH
x,2

]

+
1

σnx

I, (12)

R−1/2
yy =

[
vy,1 vy,2

]·
⎡
⎣ 1√

λy,1
− 1

σny
0

0 1√
λy,2

− 1
σny

⎤
⎦·[ vH

y,1

vH
y,2

]

+
1

σny

I, (13)

Rxy = σxσy

(
ρ1sx,1sH

y,1 + ρ2sx,2sH

y,2

)
∗=

σxσy

2
[
sx,Σ sx,Δ

]·[ ρ 0
0 ρ

]
·
[

sH
y,Σ

sH
y,Δ

]

=
[
vx,1 vx,2

]·[ ψ1 0
0 ψ2

]
·
[

vH
y,1

vH
y,2

]
, (14)

where the above identity
∗= holds when ρ1 = ρ2 = ρ, and,

ψ1 =
σxσy

2
ρ ‖sx,Σ‖·‖sy,Σ‖, ψ2 =

σxσy

2
ρ ‖sx,Δ‖·‖sy,Δ‖.

(15)

Consequently, the coherence matrix C can be decomposed as,

C = R−1/2
xx RxyR−H/2

yy

=
[
vx,1 vx,2

]·
⎡
⎣ ψ1√

λx,1λy,1
0

0 ψ2√
λx,2λy,2

⎤
⎦·[ vH

y1

vH
y2

]
. (16)

Therefore, the non-zero canonical correlation coefficients,

k(1) and k(2), can be obtained as,

k(1) = |ρ|
√

ηx,1

1+ηx,1
·
√

ηy,1

1+ηy,1
,

k(2) = |ρ|
√

ηx,2

1+ηx,2
·
√

ηy,2

1+ηy,2
,

(17)

with ηx,1 � σ2
x‖sx,Σ‖2

/
2σ2

nx
, ηy,1 � σ2

y‖sy,Σ‖2
/
2σ2

ny
,

ηx,2 � σ2
x‖sx,Δ‖2

/
2σ2

nx
, and ηy,2 � σ2

y‖sy,Δ‖2
/
2σ2

ny
being
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the equivalent output SNRs of two orthogonal decomposition

of signal modes of array-x and array-y, respectively. Our

findings are verified once again that at reasonably high SNRs,

we have k(2) → k(1) → |ρ|, meaning that the canonical

correlation coefficients reveal the spatial coherence among

two sets of data vectors from two spatially separated arrays.

5. SIMULATIONS
Simulation results are presented to demonstrate our analyti-

cal results on CCA in comparison with the empirical CCA

(with varying snapshot numbers and SNRs). We choose two

uniform linear arrays (ULAs) with Nx = Ny = 8. The im-

pinging angles of the sources are arbitrarily chosen and fixed.

As shown in the following figures, we plot the values of the

canonical correlation coefficients, both the analytical results

in solid lines in eqs.(9) and (17), and the simulated results in

scattered points where the empirical CCA are done in com-

bination with subspace pre-processing. We have shown k(1)
and k(2) as functions of the nominal spatial correlation ρ,

under various SNRs per sample for both single source in col-

ored noise fields (Fig.1) and two sources in white noise fields

(Fig.2).
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Fig. 1. CCA for a single source in colored Gaussian noise field.

Results are for k(1) vs. |ρ| under varying SNRs per sample, where

(a) 16 and (b) 80 snapshots are used in the empirical CCA.

6. CONCLUSIONS
In conclusion, CCA provide reliable information about spa-

tial correlations existing among pairs of data sets only when

SNRs at both arrays are reasonably high, and the sample sup-

port is significantly larger than the data dimensions. Specifi-
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Fig. 2. CCA for two sources in white Gaussian noise field. Results

are for k(1) and k(2) vs. |ρ| under varying SNRs per sample, where

160 snapshots are used in the empirical CCA. The impinging angles

for the two sources are 15◦ and 65◦ respectively, and ‖sx,Σ‖2/2 =
8.60, ‖sx,Δ‖2/2 = 7.40, ‖sy,Σ‖2/2 = 8.64, and ‖sy,Δ‖2/2 =
7.36.

cally, canonical correlations are a function of the true spatial

correlations as well as the SNRs of data sets from both ar-

rays. The quality of empirical CCA depends on data quality

(SNRs) on both arrays and sample support.
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